
Digital Object Identifier (DOI) 10.1140/epjc/s2005-02374-x
Eur. Phys. J. C 44, 447–457 (2005) THE EUROPEAN

PHYSICAL JOURNAL C

High scale perturbative gauge coupling in R-parity conserving
SUSY SO(10) with longer proton lifetime

M.K. Paridaa, B.D. Cajee

Physics Department, North-Eastern Hill University, Shillong 793022, India

Received: 1 July 2005 / Revised version: 21 August 2005 /
Published online: 11 October 2005 – c© Springer-Verlag / Società Italiana di Fisica 2005

Abstract. It is well known that in single step breaking of R-parity conserving SUSY SO(10) that needs the
Higgs representations 126⊕126, the GUT gauge coupling violates the perturbative constraint at mass scales
a few times larger than the GUT scale. Therefore, if the SO(10) gauge coupling is to remain perturbative up
to the Planck scale (≡ 2× 1018 GeV), the scale MU of the GUT symmetry breaking is to be bounded from
below. The bound depends upon specific Higgs representations used for SO(10) symmetry breaking but, as
we find, cannot be lower than 1.5×1017 GeV. In order to obtain such a high unification scale we propose a
two-step SO(10) breaking through SU(2)L ×SU(2)R ×U(1)B−L ×SU(3)C (g2L �= g2R) intermediate gauge
symmetry. We estimate the potential threshold and gravitational corrections to the gauge coupling running
and show that they can make the picture of perturbative gauge coupling running consistent at least up
to the Planck scale. We also show that when SO(10) → G2213 by the Higgs representations 210 ⊕ 54,
gravitational corrections alone with negligible threshold effects may guarantee such perturbative gauge
coupling. The lifetime of the proton is found to increase by nearly 6 orders over the present experimental
limit for p → e+π0. For the proton decay mediated by a dim = 5 operator a wide range of lifetimes is
possible, extending from the current experimental limit up to values 2–3 orders longer.

1 Introduction

In spite of its astounding success the non-supersymmetric
standard model (SM) suffers from the well known gauge
hierarchy problem. It fails to explain the available data
on neutrino masses and mixings and also fails to exhibit
unification of the three known gauge couplings at higher
scales. One compelling reason to solve the gauge hierar-
chy problem is to go beyond the SM through weak scale
SUSY as in the minimal supersymmetric standard model
(MSSM) [1]. The MSSM has the added virtues that, in
addition to explaining the origin of electroweak symmetry
breaking, it provides a candidate for dark matter of the
universe. If the SM fermion representations are extended
by the addition of one right-handed neutrino per genera-
tion and the corresponding extension is made in MSSM,
the model can account for neutrino masses and mixings
through seesaw mechanisms [2–4].

Another amazing aspect of MSSM has been noted to
be the unification of the three gauge couplings of disparate
strengths and origins when extrapolated to as high a scale
as MU = 2 × 1016 GeV [5]. However, the meeting of the
three gauge couplings can be truly termed the grand unifi-
cation [6,7] of the three basic forces of nature provided the
merged coupling constants evolve as a single gauge cou-
pling at higher scales and some simple ansatz for this has
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been hypothesized through SUSY GUTs such as SU(5),
SO(10), E6, and a number of other ones [7–9].

While R-parity violation as an automatic consequence
of MSSM spoils the predictive power of supersymmetric
theories, an additional elegant feature of SUSY SO(10)
breaking down to MSSM is its potentiality to conserve R-
parity. As the minimal left–right symmetric GUT SO(10)
contains the maximal subgroup SU(2)L × SU(2)R ×
SU(4)C of Pati–Salam [6] which in turn contains SU(2)L×
U(1)R ×SU(4)C , SU(2)L ×SU(2)R ×U(1)B−L ×SU(3)C

(≡ G2213), SU(2)L × U(1)R × U(1)B−L × SU(3)C and
SU(2)L × U(1)Y × SU(3)C (≡ G213 ≡ SM) as its sub-
groups [10]. Thus, subject to the consistency with the
renormalization group constraints, SUSY SO(10) gauge
symmetry may break to the SM gauge group directly
in one step or through an intermediate gauge symmetry
to the MSSM [11,20]. In addition to other superheavy
representations needed to implement the GUT symme-
try breaking, two different popular choices of Higgs rep-
resentations being extensively used to obtain the MSSM
from SUSYSO(10) are 16 ⊕ 16 and 126 ⊕ 126 . While
the first choice violates R-parity, the second one conserves
it. The Higgs representations 126 ⊕ 126 in SUSY SO(10)
have been found to solve a number of problems on fermion
masses through renormalizable interactions. To cite a few,
it rectifies the bad SU(5) mass relation in the right di-
rection inSO(10) to yield mµ = 3ms. It attributes large
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atmospheric neutrino mixing to b–τ unification and ac-
commodates the masses and mixings of three neutrino
flavors, in addition to the observed masses and mixings
of all other fermions, via the Type II seesaw mechanism
[12–15,21]. However, because of the large contribution
to the β-function coefficient of the gauge coupling evo-
lution, the presence of 126 ⊕ 126 in R-parity conserving
SUSYSO(10), in addition to other Higgs representations,
violates the perturbative constraint on the GUT gauge
coupling (αG < 1) even at mass scales a few times larger
than the GUT scale (= 2 × 1016 GeV). Although there
might be deeper reasons to believe that the R-conserving
SUSY at such scales could be non-perturbative, it is de-
sirable to have a perturbative theory at least up to the
compactification scale (MCS � 1017 GeV) or the Planck
scale (MPl = 2 × 1018 GeV).

Proton decay is a necessary prediction of a number
of GUTs including SU(5) and SO(10). The decay mode
p → e+π0 common to both SUSY and non-SUSY GUTs is
mediated by superheavy gauge bosons carrying fractional
charges and the corresponding effective Lagrangian has
a dim = 6 operator. In SUSY GUTs, the superpartners
of fermions and heavy color triplets of Higgs bosons give
rise to new decay modes such as p → K+νµ, p → K+ντ ,
and other ones. The mediation of the heavy superpartner
leads to a dim = 5 operator in the effective Lagrangian for
these supersymmetric decay modes. Recent experimental
measurements provide improved limits on the lifetimes for
both these types of decay modes,

τ
(
p → e+π0) ≥ 4 × 1033 years, (1)

τ(p → K+ντ ) ≥ 2.2 × 1033 years. (2)

While (1) gives the bound MU ≥ 5.6×1015 GeV, (2) yields
the limit on the superheavy color triplet higgsino mass
MTC̃

≥ 1017 GeV. Although this has been treated as a se-
vere constraint on SUSY SU(5) [16], easier methods have
been suggested to evade it [17,18]. In R-parity conserv-
ing SUSY SO(10) other interesting suggestions have been
made to increase the proton lifetime of the supersymmet-
ric decay mode through specific Yukawa textures, but in
this case the GUT gauge coupling remains perturbative
only up to µ = few × 2 × 1016 GeV [19].

In this paper we show that with the similar choices of
the Higgs representations as in the single step breakings of
R-parity conserving SUSY SO(10), when the GUT gauge
symmetry is allowed to break down to MSSM through
the G2213-intermediate gauge symmetry investigated re-
cently [20], perturbative GUT gauge coupling is ensured
at least up to the Planck scale due to threshold and grav-
itational corrections. Although in this paper we have ad-
dressed the issue of perturbative gauge coupling up to the
reduced Planck scale (= 2 × 1018 GeV), we have checked
that our method also works even if we use the Planck scale
as MPl � 1.2 × 1019 GeV according to the definition of
the Particle Data Group. The realization of perturbative
grand unification in R-parity conserving SO(10) which has
not been possible otherwise is demonstrated for the first
time in this paper. Other new contributions of the present
paper compared to [20] are derivations of gravitational

corrections in the presence of Higgs representations 54
and 210⊕54 which contribute to SO(10) breaking near the
GUT scale. Combining perturbative criteria with R-parity
conservation in SUSY SO(10) we obtain lower bounds on
the unification scale in different cases. A very significant
increase of proton lifetimes is obtained leading to a greater
stability of the particle.

In Sect. 2, we discuss the origin of high scale violation
of perturbation theory in SUSY SO(10). In Sect. 3 we dis-
cuss analytically the threshold and gravitational correc-
tions. In Sect. 4 we show how these corrections elevate the
unification scale so as to satify the perturbative constraint
on the GUT gauge coupling at least up to the Planck scale.
In Sect. 5 we discuss the increase in proton lifetimes in dif-
ferent cases. A summary and our conclusions are stated
in Sect. 6.

2 Perturbative constraint and lower bounds
on unification scale

With R-parity conservation a minimal SO(10) model hav-
ing 26 parameters has been identified to be the one with
Higgs representations: 210 ⊕ 126 ⊕ 126 ⊕ 10 [31] for which
a very interesting method of proton lifetime increase has
been suggested [19]. In order to account for neutrino
masses and mixings in SUSY SO(10) through Type II
seesaw dominance, the realistic symmetry breaking pat-
tern has been shown to require 210 ⊕ 54 ⊕ 126 ⊕ 126 ⊕ 10
[21] where both 210 and 54 are present. We will show
that in this case with G2213-intermediate breaking gravi-
tational corrections alone may be sufficient to guarantee
perturbative gauge coupling at higher scales. But, in the
single step breaking scenario above the GUT scale, not
only these two models but also other variants of R-parity
conserving SUSY SO(10) violate perturbation theory even
at mass scales µ = few×2×1016 GeV whenever the Higgs
representations 126 ⊕ 126 are present in the model.

Above the GUT scale (µ > MU ) the GUT fine struc-
ture constant αG(µ) = g2

G(µ)
4π , where gG is the GUT cou-

pling, evolves at one-loop level as

1
αG(µ)

=
1

αG(MU )
− a

2π
ln

µ

MU
(3)

The β-function coefficient in (3) consists of gauge, mat-
ter and Higgs contributions,

a = agauge + amatter + aHiggs. (4)

The gauge bosons of SO(10) in the adjoint representation
45, three generations of matter in the spinorial represen-
tations 16, and their superpartners contribute as

agauge = −24, amatter = 6, (5)

The Higgs contributions of different SO(10) irreducible
representations are shown in Table 1.

Noting that agauge + amatter = −18, use of (5) in (3)
and (4) gives at µ = Λ > MU

1
αG(Λ)

=
1

αG(MU )
+

18
2π

ln
Λ

MU
− aHiggs

2π
ln

Λ

MU
. (6)
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Table 1. Contribution of Higgs representations to the SUSY
SO(10) β-function coefficient for the GUT gauge coupling evo-
lution

Rep. aHiggs Rep. aHiggs

10 1 45 ⊕ 16 ⊕ 16 ⊕ 10 13
54 12 54 ⊕ 45 ⊕ 16 ⊕ 16 ⊕ 10 25
120 28 210 ⊕ 16 ⊕ 16 ⊕ 10 61
16 2 45 ⊕ 126 ⊕ 126 ⊕ 10 79
45 8 210 ⊕ 126 ⊕ 126 ⊕ 10 127
126 35 54 ⊕ 45 ⊕ 126 ⊕ 126 ⊕ 10 91
210 56 210 ⊕ 54 ⊕ 126 ⊕ 126 ⊕ 10 139

If the gauge coupling constant encounters a Landau
pole at Λ, αG(Λ) −→ ∞, and (6) leads to

aHiggs ≤ 18 +
2π

ln
(

Λ
MU

) × 1
αG(MU )

. (7)

On the other hand the perturbative condition

αG(Λ) ≤ 1. (8)

leads to the constraint

aHiggs ≤ 18 +
2π

ln
(

Λ
MU

)
[

1
αG(MU )

− 1
]

. (9)

In the single step breakings of all SUSY GUTs MU �
2 × 1016 GeV, αG(MU )−1 � 25, and the upper bound de-
fined by inequality (9) has been estimated [22].

For SUSY SO(10) with 45 ⊕ 16 ⊕ 16 ⊕ 10, aHiggs = 13
and the perturbative constraint remains valid for higher
scales, and perturbative grand unification is guaranteed
at least up to the Planck scale [22]. However, for min-
imal SO(10) with 210 ⊕ 126 ⊕ 126 ⊕ 10, aHiggs = 127
and the perturbation theory cannot be guaranteed to hold
up to the Planck scale in the grand-desert model. Thus,
in the single step breaking of SUSY SO(10) to MSSM,
whenever larger Higgs representations like 126 ⊕ 126 are
used to break the SU(2)R × U(1)B−L ⊂ SO(10) or
SU(2)R ×SU(4)C ⊂ SO(10), leading to the seesaw mech-
anism and Majorana neutrino masses, the large contribu-
tion to the Dynkin indices violates perturbation theory at
Λ = few × 2 × 1016 GeV. This has led to the investiga-
tions of perturbative grand unification of SO(10) through
the use of the Higgs representations 16 ⊕ 16 instead of
126 ⊕ 126 in the supergrand-desert scenario [22].

It is clear that in R-parity conserving SUSY SO(10)
the Higgs contribution to the β-function coefficient for the
gauge coupling evolution satisfies aHiggs > 71. Noting that
αG(MU ) � 0.043 and demanding that perturbative con-
dition is satisfied up to Λ = MPl = 2×1018 GeV, then the
inequality (9) gives the lower bound

MU > 1017 GeV.

This lower bound on the unification scale has to be sat-
isfied in any R-parity conserving SUSY SO(10) if the GUT

gauge coupling is to remain perturbative up to the Planck
scale. It is interesting to note that this lower bound ac-
cidentally matches the higgsino mass limit obtained from
the current experimental limit of the proton lifetime for
p → K+νµ,τ .

In the four specific examples of Higgs representations
shown in Table 1 which correspond to R-parity conserva-
tion, the Higgs contributions to the β-function coefficients
in the respective cases and the inequality (9) give different
values of lower bounds on the unification scale. In partic-
ular for the choices of the Higgs representations
(I) 210 ⊕ 126 ⊕ 126 ⊕ 10,
(II) 54 ⊕ 45 ⊕ 126 ⊕ 126 ⊕ 10,
(III) 210 ⊕ 54 ⊕ 126 ⊕ 126 ⊕ 10, and
(IV) 45 ⊕ 126 ⊕ 126 ⊕ 10, the lower bounds on the uni-
fication scale turn out to be MU = 5.8 × 1017 GeV,
MU = 3 × 1017 GeV, MU = 6.25 × 1017 GeV, and
MU = 1.5 × 1017 GeV, respectively. Thus the smallest
lower bound corresponds to the one for the Higgs repre-
sentation 45⊕126⊕126⊕10 as expected with the minimal
contribution aHiggs = 79. These lower bounds suggest that
if the perturbative criteria on the GUT gauge coupling is
to be satisfied, the unification scale has to be elevated by
at least 1 order compared to the conventional value. Fur-
ther, the perturbative constraint has the implication that,
in R-conserving SUSY SO(10), the larger is the Higgs con-
tribution to the β-function coefficient, the greater must be
the unification scale. The lower bounds are to be satisfied
irrespective of theSO(10) breaking to MSSM through a
single step or through an intermediate gauge symmetry.

In the next section we show how the presence of
SU(2)L×SU(2)R×U(1)B−L×SU(3)C-intermediate gauge
symmetry at higher scales yields perturbative SO(10) up
to the Planck scale even if we use the Higgs representations
126 ⊕ 126 with or without 210 or other Higgs representa-
tions such as 54 and 45 for high scale breaking of SUSY
SO(10).

3 Threshold and gravitational corrections
on mass scales

It is clear from (9) that, if in a specific GUT scenario
the unification scale MU can be closer to the Planck or
the compactification scale than in the single step breaking
case, the contribution of the Higgs representation to the
RHS of (9) can be larger without violating the inequality.
In [20] the intermediate G2213 breaking in SUSY SO(10)
was investigated, and we have

SO(10) × SUSY ΦU−→
MU

G2213 × SUSY (10)

126⊕126−→
MI

G213 × SUSY
10−→

MZ

U(1)em × SU(3)C ,

where the Higgs representations responsible for the GUT
symmetry breaking were chosen as ΦU ≡ 210, or 54 ⊕ 45
which also break D-parity at the GUT scale while permit-
ting the left–right asymmetric gauge group G2213 (g2L 	=
g2R) to survive down to the intermediate scale [23]. In such



450 M.K. Parida, B.D. Cajee: Perturbative SUSY SO(10) with R-parity conservation

an R-parity conserving symmetry breaking chain quite sig-
nificant threshold corrections arising out of spreading of
masses around the intermediate scale and the GUT scale
and gravitational corrections arising out of dim = 5 oper-
ators induced by the Planck or the compactification scales
[24–27] were noted. In this section we estimate these effects
in detail in order to explore the possibility of increasing
MU which is necessary for the existence of a perturbative
gauge coupling at higher scales. While the gravitational
corrections originating from the dim = 5 operator due to
210 was investigated in [20], in this work we investigate
the corresponding effects due to 54 and 210 ⊕ 54 while
studying the threshold effects of the latter. The evolution
of gauge couplings in the two different mass ranges is ex-
pressed as

1
αi(MZ)

=
1

αi(MI)
+

ai

2π
ln

MI

MZ
+ θi − ∆i,

i = 1Y, 2L, 3C, (11)
1

αi(MI)
=

1
αi(MU )

+
a′

i

2π
ln

MU

MI
+ θ′

i − ∆′
i − ∆

(gr)
i ,

i = 2L, 2R, BL, 3C, (12)

where the second, third, and the fourth terms in the RHS
of (11) and (12) represent one-loop, two-loop, threshold,
and gravitational corrections, respectively [20]. In (11) and
(12) aY = 33/5, a2L = 1, a3C = a′

3C = −3, a′
2L = 1, a′

2R =
5 and a′

BL = 15. The two-loop coefficients (bij) below the
intermediate scale and (b′

ij) above the intermediate scale
have been obtained in [20]. Below MI the presence of G213
in MSSM gives

bij =




199
25

27
5

88
5

9
5 25 24
11
5 9 14


 , i, j = 1Y, 2L, 3C. (13)

Above the intermediate scale, the two-loop beta-function
coefficients in the presence of SUSY G2213 symmetry are

b′
ij =




25 3 3 24
3 73 27 24
9 81 61 8
9 9 1 14


 ,

i, j = 2L, 2R, BL, 3C. (14)

These coefficients occur in two-loop contributions repre-
sented by θi and θ′

i in the two mass ranges;

θi =
1
4π

∑
j

Bij ln
αj(MI)
αj(MZ)

,

θ′
i =

1
4π

∑
j

B′
ij ln

αj(MU )
αj(MI)

,

Bij =
bij

aj
, B′

ij =
b′
ij

a′
j

. (15)

For the sake of simplicity we have neglected the Yukawa
contributions to two-loop effects on gauge couplings.

While the functions ∆i include threshold effects at MZ

and MI with
∆i = ∆

(Z)
i + ∆

(I)
i ,

the ∆′
i include threshold effects at MU .

It may be recalled that although in non-
supersymmetric gauge theories threshold effects contain
both constant terms as well as logarithmic terms, it
was noted in [32] that the constant terms are absent in
supersymmetric threshold corrections.

In the presence of G2213-intermediate symmetry the
particle spectra of Higgs scalars, fermions, gauge bosons,
and their superpartners with masses lighter than MU are
the same in all four cases considered in this paper. Then,
under the assumption that all superheavy particles with
masses larger than MU decouple from the Lagrangian, the
contributions to the renormalization group evolutions of
gauge and Yukawa couplings up to two loops below MU

are identical in all the four cases,
Case (I): 210 ⊕ 126 ⊕ 126 ⊕ 10,
Case (II): 54 ⊕ 45 ⊕ 126 ⊕ 126 ⊕ 10,
Case (III): 210 ⊕ 54 ⊕ 126 ⊕ 126 ⊕ 10, and
Case (IV): 45 ⊕ 126 ⊕ 126 ⊕ 10.

However, the GUT threshold and gravitational effects
expressed through ∆′

i and ∆
(gr)
i , respectively, differ from

one choice of representation to another.

3.1 Threshold effects with effective mass parameters

We follow the method of effective mass parameters due to
Carena, Pokorski and Wagner [28] to estimate threshold
effects which have been also utilised to study such effects
in SUSY SU(5) by introducing two sets of effective mass
parameters, one set for the SUSY threshold and the other
set for the GUT threshold [29]. In [20] their effects have
been examined on SUSY SO(10) with G2213-intermediate
symmetry by defining one set of effective mass parame-
ters for each threshold. Although these parameters at the
weak scale SUSY threshold have been approximately esti-
mated [28,29], no such estimations are available for higher
thresholds and they would be assumed to deviate at most
by a factor 6 (1/6) from the corresponding scales. Follow-
ing the standard procedure, the effective mass parameters
are defined through the following relations:

∆Z
i =

∑
α

bα
i

2π
ln

Mα

MZ
=

bi

2π
ln

Mi

MZ
,

i = 1Y, 2L, 3C; µ = MZ ; (16)

∆I
i =

∑
α

b′α
i

2π
ln

M ′
α

MI
=

b′
i

2π
ln

M ′
i

MI
,

i = 1Y, 2L, 3C; µ = MI ; (17)

∆′ = ∆U
i =

∑
α

b′′α
i

2π
ln

M ′′
α

MU

=
b′′
i

2π
ln

M ′′
i

MU
,

i = 2L, 2R, BL, 3C; µ = MU ; (18)
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where α refers to the actual G213 submultiplet near µ =
MZ , MI or G2213 submultiplet near µ = MU and Mα, M ′

α

or M ′′
α refer to the actual component masses. The three

sets of effective mass parameters are Mi, M ′
i , and M ′′

i .
The coefficients b′

i =
∑

b′α
i and b′′

i =
∑

b′′α
i have been

defined in (16)–(18) following [20,28]. The numbers bα
i and

b′α
i refer to the contributions of the multiplet α to the β-

functions of U(1)Y , SU(2)L, and SU(3)C gauge couplings.
Similarly b′′α

i refers to the contributions of the multiplet
α to the β-functions of U(1)Y , SU(2)L, SU(2)R, SU(3)C ,
and U(1)B−L gauge couplings [20].

The threshold effects on the mass scales MI and MU

are then expressed in the form

∆ ln
MI

MZ
= a ln

M ′′
2R

MU
+ b ln

M ′′
BL

MU
+ c ln

M ′′
2L

MU

+d ln
M ′′

3C

MU
+ e ln

M ′
1Y

MI
− 1.56,

∆ ln
MU

MZ
= a′ ln

M ′′
2L

MU
+ b′ ln

M ′′
3C

MU
+ 0.105, (19)

where the numerical values are due to the weak scale
SUSY threshold effects. The values of the parameters com-
puted for the four different cases are
Case (I): 210 ⊕ 126 ⊕ 126 ⊕ 10:

(a, b, c, d, e) = (−25,−57/4, 130,−355/4,−9/4),
(a′, b′) = (26,−213/8), (20)

Case (II): 54 ⊕ 45 ⊕ 126 ⊕ 126 ⊕ 10:

(a, b, c, d, e)
= (−77/4,−45/4, 405/4,−135/2,−9/4),

(a′, b′) = (81/4,−81/4), (21)

Case (III): 210 ⊕ 54 ⊕ 126 ⊕ 126 ⊕ 10:

(a, b, c, d, e) = (−109/4,−61/4, 565/4,−95,−9/4),
(a′, b′) = (113/4,−57/2), (22)

Case (IV): 45 ⊕ 126 ⊕ 126 ⊕ 10:

(a, b, c, d, e)
= (−35/4,−31/6, 185/4,−385/12,−9/4),

(a′, b′) = (37/4,−77/8). (23)

Although Cases (I) and (II) were derived in [20] some
numerical and typographical errors have been corrected
here, while Cases (III) and (IV) are new.

3.2 Gravitational corrections from dim = 5 operators

In this subsection we derive gravitational corrections in
Case (II) and Case (III) while such corrections in Case (I)
were discussed in [20]. In addition to the renormalizable
part of the Lagrangian of SUSY GUT, a dim = 5 operator
can be induced either in dim = 4 gravity at the Planck

scale (MC = MPl = 2 × 1018 GeV) or due to compact-
ification of extra dimension(s) at scales MC = MCS ∼
1017 GeV [25]. We have

Lgr = − η

2MC
Tr (FµνΣFµν) , (24)

where, for example, Σ ≡ 210, 54 ⊂ SO(10) that contribute
to the GUT symmetry breaking near the MU and MC =
compactification scale (MCS) of extra dimension(s), or the
Planck scale (MPl) in dim = 4 gauge theory. When Σ ≡
45 ⊂ SO(10) the contribution of the dim = 5 operator in
(24) identically vanishes. We will confine ourselves to the
Cases (I)–(III) for gravitational corrections.

Although there are no exact theoretical constraint on
η it could be positive or negative with plausible values
up to |η| ≈ O(10). Whereas 210 and 54 are present in
Cases (I) and (II), respectively, both are present in Case
(III). In [20] gravitational effects were derived only for
Case (I) corresponding to Σ ≡ 210 with a normalization
factor 1/8 instead of 1/2 as given in (24) [26]. In order
to compare with gravitational corrections resulting from
(24) with Σ ≡ 54 we evaluate them for Case (I) with the
common normalization factor of 1/2. In a number of ear-
lier investigations the effects of such operators on GUT
predictions have been found to be quite significant [18,20,
25–27]. In the presence of SO(10) → G2213 such opera-
tors modify the GUT boundary condition on the coupling
constants which has the general form at µ = MU of

α2L(MU )(1 + ε2L) = α2R(MU )(1 + ε2R)
= αBL(MU )(1 + εBL) = α3C(MU )(1 + ε3C)
= αG(MU ). (25)

These boundary conditions lead to the corresponding
gravitational corrections on the four gauge couplings,

∆gr
i = − εi

αG
, i = 2L, 2R, BL, 3C. (26)

Then using the procedure of [20], analytic formulas for
the gravitational corrections of the two mass scales are
derived: (

ln
MI

MZ

)
gr

=
2π(A′ε′ − Aε′′)
αG(AB′ − A′B)

,

(
ln

MU

MZ

)
gr

=
2π(Bε′′ − B′ε′)
αG(AB′ − A′B)

, (27)

where

B = B′ =
5
3
aY − 2

3
a′

BL − a′
2R,

A = a′
2R +

2
3
a′

BL − 5
3
a′
2L,

A′ = a′
2R +

2
3
a′

BL + a′
2L − 8

3
a′
3C ,

ε′′ = ε2L + ε2R +
2
3
εBL − 8

3
ε3C ,

ε′ = ε2R +
2
3
εBL − 5

3
ε2L. (28)
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We will need the numerical values of A, A′, B, B′ defined
through (28) which are the same in all R-parity conserving
cases with G2213-intermediate gauge symmetry,

A = 40/3, A′ = 24,

B = B′ = −4. (29)

With the generalized formulas given by (25)–(28) and the
numerical values given in (29) we discuss specific gravita-
tional corrections in three different cases as given below.

Case (I): 210 ⊕ 126 ⊕ 126 ⊕ 10

In this case Σ ≡ 210, and we denote the unknown param-
eter in (24) as η = η1. After taking into account a factor
4 in the normalization of the gauge kinetic term [26,27]
and using an approximate relation between the GUT scale
VEV φ0 and the degenerate masses of superheavy gauge
bosons, MU ≈ (2/9)1/2

gGφ0, we have

ε2R = −ε2L = −ε3C =
1
2
εBL = ε1,

ε′ = ε2R +
2
3
εBL − 5

3
ε2L = 4ε1,

ε′′ = ε2R + ε2R +
2
3
εBL − 8

3
ε3C = 4ε1, (30)

where

ε1 =
3η1

4
MU

MC

1√
4παG

. (31)

Using (29) and (30) in (27) gives
(

ln
MI

MZ

)
gr

=
2πε1
αG

,

(
ln

MU

MZ

)
gr

= 0, (32)

which were derived in [20] but with a different normaliza-
tion factor for ε1.

Case (II): 54 ⊕ 45 ⊕ 126 ⊕ 126 ⊕ 10

In this case 45 ⊂ SO(10) does not contribute to the dim =
5 operator of (24). Using Σ ≡ 54 and denoting η = η2 in
(24), we derive

ε3C = εBL = ε2,

ε2L = ε2R = −3
2
ε2,

ε′ = ε2R +
2
3
εBL − 5

3
ε2L =

5
3
ε2,

ε′′ = ε2L + ε2R +
2
3
εBL − 8

3
ε3C = −5ε2, (33)

where

ε2 =
3η2

4
MU

MC

1√
15παG

. (34)

Using (29) and (33) and (34) in (27), we get
(

ln
MI

MZ

)
gr

=
5πε2
αG

,

(
ln

MU

MZ

)
gr

=
5πε2
4αG

. (35)

Equation (35) has the implication that if we attempt to
change the unification mass by 1 order purely by grav-
itational corrections, then the intermediate scale would
change by approximately 4 orders.

Case (III): 210 ⊕ 54 ⊕ 126 ⊕ 126 ⊕ 10

The importance of this case emphasizing the presence of
54 in addition to 210 for realistic SUSY SO(10) breaking
leading to Type II seesaw dominance for neutrino masses
has been elucidated in [21] in the single step breaking case.
In our case with G2213-intermediate symmetry both 54
and 210 contribute separately to the dim = 5 operator
with

Lgr = − η1

2MC
Tr(Fµνφ210F

µν)

− η2

2MC
Tr(Fµνφ54F

µν). (36)

Then

∆gr
i = −(ε54i + ε210i )/αG,

i = 2L, 2R, BL, 3C.

The relations (32) and (35) hold separately leading to
(

ln
MU

MZ

)
gr

=
5πε2
4αG

,

(
ln

MI

MZ

)
gr

=
5πε2
αG

+
2πε1
αG

.

Comparing (31) and (34) gives ε1/ε2 = (15/4)1/2η1/η2. In
the next section we use these results to study the effects
of gravitational corrections on SO(10) gauge coupling.

4 Perturbative SO(10) gauge coupling
at higher scales

In all the three cases the same lighter components con-
tained in 126⊕126⊕10 contribute to the one-loop and two-
loop β-function coefficients below the GUT scale and none
of the components in 210, 54, or 45 contribute to large run-
nings of the gauge couplings. Thus, ignoring threshold and
gravitational corrections, the two-loop solution of RGEs
is the same for all the four cases with

M0
I = 1015.2 GeV, M0

U = 1016.11 GeV,

α0
G = 0.043. (37)
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Then adding threshold and gravitational corrections to
the two-loop solutions the mass scales are expressed as

ln
MU

MZ
= ln

M0
U

MZ
+ ∆ ln

MU

MZ
+

(
ln

MU

MZ

)
gr

,

ln
MI

MZ
= ln

M0
I

MZ
+ ∆ ln

MI

MZ
+

(
ln

MI

MZ

)
gr

. (38)

When we include the corrections mentioned in Sect. 3
through (38), the resulting mass scales are modified in
each case. The increased value of MU then extends the
range of perturbativeSO(10) gauge coupling up to the
Planck scale. In what follows we discuss some examples
of such solutions in each case.

The mass scales obtained including threshold correc-
tions are denoted as M

(1)
i and those obtained including

both the threshold and gravitational corrections are de-
noted as M

(2)
i (i = I, U). We have

Case (I): As shown in Sect. 2 the lower bound on the uni-
fication mass in this case is 5.8 × 1017 GeV. Using thresh-
old and gravitational corrections we examine how far this
constraint can be satisfied. Using the effective mass pa-
rameters

M ′′
2L = MU , M ′′

3C = 0.87MU ,

M ′′
2R = 1.5MU , M ′′

BL = 1.8MU ,

M ′
1Y = MI ,

we obtain, including only threshold effects,

M
(1)
U = 6.54 × 1017 GeV, M

(1)
I = 7 × 1011 GeV.

Using this modified value, MU = M
(1)
U = 6.54 ×

1017 GeV, (6) gives the perturbative value of the GUT
gauge coupling at Λ = MPl with αG(MPl) = 0.587. The
effects are more (less) prominent if the mass gap of the
effective mass parameters are increased (decreased) for
which the values of the corresponding gauge coupling will
be smaller (larger). It is easily checked that the inequal-
ity (9) is satisfied. Since the gravitational corrections do
not affect the GUT scale, but affect only the intermedi-
ate scale which is of the same order as the right-handed
neutrino mass, in this case any desired value of the inter-
mediate scale matching the scale of leptogenesis, or the
Pecei–Quinn symmetry breaking scale, or even a value
close to the minimal GUT scale can be obtained. Thus
the model is potentially interesting from the point of view
of neutrino physics, leptogenesis and strong CP -violation.
Other examples of solutions for this case are shown in Ta-
ble 2.
Case (II): As shown in Sect. 2 the value of aHiggs = 91 in
this case gives the lower bound MU > 3 × 1017 GeV. To
examine how far threshold and gravitational corrections
may allow for such high unification scales, at first we con-
sider only threshold corrections. Using the effective mass
parameters

M ′′
2L = MU , M ′′

2R = 1.7MU , M ′′
BL = 2MU ,

M ′′
3C = 0.87MU , M ′

1Y = MI ,

gives, including threshold corrections but ignoring gravi-
tational corrections,

M
(1)
I = MR = 2.91 × 1011 GeV,

M
(1)
U = 3.85 × 1017 GeV.

Clearly the mass gaps near the GUT scale are reasonably
small and are confined between 0.87MU and 2MU . Now
adding gravitational corrections with η2 = 3.0 gives

M
(2)
I = 9.31 × 1012 GeV, M

(2)
U = 8.95 × 1017 GeV.

Using the value of MU = M
(2)
U = 8.95 × 1017 GeV we ob-

tain from (6) the perturbative value of the gauge coupling
, αG(MPl) = 0.084. Evaluating the RHS of inequality (9)
gives

aHiggs < 180.

Noting from Table 1 that for this case aHiggs = 91 it is clear
that inequality (9) is satisfied ensuring perturbativity of
SO(10) gauge coupling up to the Planck scale. Another
example of a solution including gravitational correction is
given in Table 2.
Case (III): As shown in Sect. 2 for this case aHiggs = 139
and (9) gives the lower bound MU ≥ 6.25 × 1017 GeV
to ensure perturbative gauge coupling up to the Planck
scale. The necessity of both 210 and 54 for realistic SUSY
SO(10) breaking directly to MSSM has been emphasized
in [21]. With G2213-intermediate breaking this case ap-
pears to be interesting as it shows the possibility that
dominant gravitational corrections with marginal or neg-
ligible threshold effects can elevate the GUT scale closer
to the Planck scale [25]. Although, in principle, thresh-
old effects are somewhat larger in this case compared to
the Cases (I), (II) and (IV) because of the presence of
an extended size of the Higgs representations, their actual
values are controlled by the choice of the mass gap in the
effective mass parameters. For example, using the effective
mass parameters,

M ′′
2L = MU , M ′′

3C = 0.87MU ,

M ′′
2R = 1.6MU , M ′′

BL = 1.6MU ,

M ′
1Y = MI ,

we obtain, including only threshold effects,

M
(1)
U = 7.57 × 1017 GeV, M

(1)
I = 3.92 × 1011 GeV.

Then (6) gives the perturbative gauge coupling
αG(MPl) � 0.25.

Further addition of gravitational corrections with η1 =
−3.0 and η2 = 5.0 gives higher values of the unification
scale closer to MPl,

M
(2)
U = 2.95 × 1018 GeV, M

(2)
I = 6.96 × 1012 GeV.

Using this high value of the unification scale MU =
M

(2)
U = 2.95 × 1018 GeV we obtain from (6) the pertur-

bative value of the gauge coupling αG(MPl) � 0.049. We
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Table 2. PerturbativeSO(10) gauge coupling at higher scales including threshold and gravitational corrections to two-loop
solutions for which M0

I = 1015.20 GeV and M0
U = 1016.11 GeV. The mass scales M

(1)
i (i = I, U) have been obtained including

threshold corrections and M
(2)
i (i = I, U) including both threshold and gravitational corrections

Higgs Rep. Mass parameters M
(1)
I (GeV) M

(1)
U (GeV) η1 η2 M

(2)
I (GeV) M

(2)
U (GeV) αG(MPl)

210⊕ M ′
1Y = MI , M ′′

2L = MU 0.0 – 7 × 1011 6.54 × 1017

126 ⊕ 126 M ′
2R = 1.5MU , M ′′

BL = 1.8MU 7 × 1011 6.54 × 1017 0.5 – 1.08 × 1012 6.54 × 1017 0.587

⊕10 M ′′
3C = 0.87MU 5.0 – 5.49 × 1013 6.54 × 1017

M ′
1Y = 2MI , M ′′

2L = 2.5MU 1.5 – 1.05 × 1013 8.38 × 1017 0.125

M ′
2R = 4.5MU , M ′′

BL = 3.76MU 2.84 × 1012 8.38 × 1017 4.9 – 2.05 × 1014 8.38 × 1017

M ′′
3C = 2.1MU

54 ⊕ 45⊕ M ′
1Y = MI , M ′′

2L = MU – 3.0 9.31 × 1012 8.95 × 1017 0.084

126 ⊕ 126 M ′
2R = 1.7MU , M ′′

BL = 2MU 2.91 × 1011 3.85 × 1017

⊕10 M ′′
3C = MU – 6.5 5.3 × 1014 2.1 × 1018 0.047

210 ⊕ 54⊕ M ′
1Y = MI , M ′′

2L = MU −1.5 2.5 1.65 × 1012 1.5 × 1018 0.09

126 ⊕ 126 M ′
2R = 1.6MU , M ′′

BL = 1.6MU 3.92 × 1011 7.57 × 1017

⊕10 M ′′
3C = 0.87MU −3.0 5.0 6.96 × 1012 2.95 × 1018 0.049

M ′
1Y = MI , M ′′

i = MU 3.3 × 1014 1.43 × 1016 −20.0 14.2 1.09 × 1014 8.61 × 1017 0.175

i=2L, 2R, BL, 3C

45⊕ M ′
1Y = MI , M ′′

2L = 1.5MU

126 ⊕ 126 M ′
2R = M ′′

BL = 3.5MU 1.2 × 1015 4.73 × 1017 – – – – 0.10

⊕10 M ′′
3C = MU

also note that the perturbative inequality (9) is easily sat-
isfied with Λ = MPl. Another example of such solution for
this case is shown in Table 2, where both threshold and
gravitational corrections have been included.

Now we show that with negligible GUT threshold cor-
rections, but with the inclusion of gravitational correc-
tions alone in this case it is also possible to obtain high
values of the unification scale and perturbative gauge cou-
pling up to the Planck scale. For the sake of simplicity
ignoring all high scale threshold corrections by choosing
M ′

1Y = MI and M ′′
i = MU (i = 2L, 2R, BL, 3C) and

using η1 = −20.0 and η2 = 14.2 leads to ε1 = −0.128
and ε2 = 0.047. Then (36) gives

(
ln MU

MZ

)
gr

= 4.33 and(
ln MI

MZ

)
gr

= −1.49. When added to two-loop solutions

including the weak scale SUSY threshold corrections, we
obtain

M
(2)
U = 8.61 × 1017 GeV, M

(2)
I = 1.09 × 1014 GeV.

Using MU = M
(2)
U = 8.61 × 1017 GeV in (6) gives the

perturbative value of the gauge coupling at Λ = MPl with

αG(MPl) = 0.175. We find that the RHS of (9) is � 190 as
compared to the value aHiggs = 139 for this case and the
perturbative inequality is satisfied. Thus, including grav-
itational corrections alone the SO(10) model with such
a choice of Higgs representation guarantees perturbative
SUSY SO(10) gauge coupling up to the Planck scale.
Case (IV): As shown in Sect. 2, aHiggs = 79 through (9)
gives the lower bound MU ≥ 1.5 × 1017 GeV in this case
to ensure perturbative gauge coupling up to Planck scale.
As there are no gravitational corrections due to the dim =
5 operator for this case we will consider only threshold
corrections. Using

M ′′
2L = 1.5MU , M ′′

2R = M ′′
BL = 3.5MU ,

M ′′
3C = MU , M ′

1Y = MI ,

we obtain

M
(1)
I = 1.2 × 1015 GeV, M

(1)
U = 4.7 × 1017 GeV.

Using MU = M
(1)
U = 4.7 × 1017 GeV in (6) gives the

perturbative gauge coupling at the Planck scale with
αG(MPl) � 0.10. The RHS of (9) is found to be � 119
and the inequality is satisfied.
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5 Proton lifetime predictions

As pointed out in Sect. 1, the experimental lower limit on
the proton lifetime for the decay mode p → e+π0 mediated
by superheavy gauge bosons or equivalently through the
effective dim = 6 operator sets a lower limit on the GUT
scale, MU ≥ 5.6×1015 GeV which is easily satisfied in the
supergrand-desert scenario for which, excluding thresh-
old or gravitational corrections, MU = 2 × 1016 GeV. The
lower bounds on MU obtained in Sect. 2 for Cases (I)–
(IV), purely from the requirement of perturbativity of the
SO(10) gauge coupling up to the Planck scale, are found
to be satified by the RG solutions for the mass scales when
threshold corrections, or gravitational corrections, or both
are included in the intermediate scale models. In Case (IV)
for which the Higgs representations 45 ⊕ 126 ⊕ 126 ⊕ 10
have the smallest size among all the four cases, the solu-
tions of the RGEs for the mass scales are consistent with
the lower bound MU ≥ 1.5 × 1017 GeV when threshold
effects are included. In each of the four cases the corre-
sponding lower bound on the unification scale translates
into a lower bound on the proton lifetime. The shortest
of these lower bounds on the proton lifetime occurs in the
Case (IV),

τ
(
p → e+π0) ≥ 2.1 × 1039 years. (39)

In Cases (I)–(III) the lifetimes are longer than this value
as can be approximately estimated using Table 2. These
analyses suggest that the decay mode p → e+π0 which
has a lifetime at least 6 orders longer than the current
limit is inaccessible to experimental observation.

Supersymmetric decay modes of the proton such as
p → K+ν̄µ, p → K+ν̄τ and other ones are character-
istic predictions in SUSY GUTs [30]. These decays are
mediated by higgsinos (TC̃) which are superpartners of
color triplet Higgs scalars (TC) having superheavy masses
near the GUT scale. As pointed out the experimental
lower limit on the proton lifetime given in (2) sets the
lower bound on the superheavy color triplet higgsino mass,
MTC̃

≥ 1017 GeV.
In SUSY SU(5) there is one such pair of higgsinos

which are superpartners of Higgs color triplets contained
in 5 ⊕ 5 ⊂ SU(5); in SUSY SO(10) models the color
triplet Higgs may be treated as a linear combination of the
triplets contained in 10, 126⊕126 and 45, or 54, or 210 de-
pending upon the choice of specific Higgs representations
used to break the GUT symmetry to G2213 [19]. For the
sake of simplicity we ignore finer details of the calculations
and give plausibility arguments to show that for these de-
cays governed by the effective dim = 5 operators, proton
lifetimes ranging from the present experimental limit to
several orders longer can be a natural prediction of the
intermediate breaking scenario.

In a supergrand-desert model like SUSY SU(5), the
constraint on the color triplet higgsino mass is obtained
using the unification condition including threshold cor-
rections: gG(ΛU ) = g1Y (ΛU ) + ∆1Y (ΛU ) = g2L(ΛU ) +
∆2L(ΛU ), where gG = GUT gauge coupling and ΛU is
the GUT scale. This leads to the constraint g−2

G (ΛU ) −

g−2
3C (ΛU ) = (3/20π2) ln(MTC̃

/ΛU ) and MTC̃
� few ×

1015 GeV [33]. However, including gravitational correc-
tions a large increase of the higgsino mass even up to 4
orders of magnitude has been suggested in SUSY SU(5)
[18].

But in the presence of G2213-intermediate symmetry
in the mass range µ = MI − MU , the GUT scale con-
straint equating g1Y and g2L is absent since the U(1)Y

gauge coupling splits above the scale MI into two sepa-
rate unconstrained gauge couplings,

1
g2
1Y (µ)

=
2
5

1
g2

BL(µ)
+

3
5

1
g2
2R(µ)

, µ = MI − MU .

As the gauge symmetry near ΛU is no longer the SM,
but G2213, the simple SU(5) relation among gG, g3C and
MTC̃

is no longer valid. Further, unlike SU(5) where the
Higgs color triplet and anti-triplet are confined to its
Higgs representations, 5 ⊕ 5, in SO(10) their number is
much larger, as they can originate from Higgs represen-
tations like 10, 126 ⊕ 126, 45, 54, and 210. In view of
these there is no similar precision constraint on MTC̃

as
in SUSY SU(5) originating from gauge coupling unifica-
tion. In the presence of such a two-step breaking through
G2213-intermediate gauge symmetry the value of MTC̃

can
easily exceed 1017 GeV.

Since our lower bounds needed for perturbative gauge
coupling up to the Planck scale as shown in Sect. 4 are in
the range

MU ≥ (1.5–6.2) × 1017 GeV,

and the lifetimes for the supersymmetric decay modes are
proportional to M2

TC̃
, the lower bound on lifetimes are ex-

pected to be longer by factors ranging between 2.2 and
38 compared to the single step breaking scenario. This
is due to the natural expectation that without additional
fine tuning all superheavy components including the color
triplets would have masses close to MU . Thus, the crite-
ria of perturbative gauge coupling up to the Planck scale,
which are easily met by threshold or gravitational cor-
rections in the four cases of R-parity conserving SUSY
SO(10), constrain the unification scales with MU ≥ (1.5–
6.2) × 1017 GeV which in turn predict for the supersym-
metric decay modes of the proton,

τ(p → K+ντ ) ≥ (2–9) × 1034 years. (40)

But it is well known that even without additional fine
tuning the superheavy components could easily be a few
times lighter or heavier than MU . Stretching this factor
to the value of � 1/6 or 6 the lower limit on the proton
lifetime has a wider range starting from the current ex-
perimental limit up to a value which is 2–3 orders longer.

It is interesting to note that the high scale perturba-
tive renormalization group relations (6) or (9) and the R-
parity conservation in SUSY SO(10) predict these lower
bounds on the unification scales, the smallest one being
MU � 1.5 × 1017 GeV. The resulting longer values of the
proton lifetime predictions are consequences of generalized
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perturbative criteria in R-parity conserving SUSY SO(10)
which are also solutions to perturbative renormalization
group equations including threshold or gravitational cor-
rections.

6 Summary and conclusion

SUSY SO(10) with 126 ⊕ 126 and other Higgs represen-
tations in the case of single step breaking to MSSM has
many attractive features for all fermion masses and mix-
ings while ensuring R-parity conservation. But the popu-
lar argument raised against the model is that it violates
perturbative gauge theory as the GUT coupling blows off
even at mass scales a few times larger than the conven-
tional GUT scale. In this paper we have shown that the
requirement that the GUT gauge coupling remains per-
turbative up to the Planck scale imposes lower bounds on
the unification scale which are at least 1 order larger than
the conventional GUT scale. We have shown that the so-
lutions to RGEs respecting these lower bounds are in fact
possible if the threshold and/or gravitational corrections
are included. The four different models discussed here en-
sure perturbative gauge coupling at least up to the Planck
scale. The proton lifetime for p → e+π0 becomes longer
at least by nearly 6 orders of magnitude compared to the
current experimental limit. For the supersymmetric decay
modes a wide range of lifetimes is possible extending from
the current experimental limit up to values 2–3 orders
longer. These consequences follow without any additional
fine tuning and by adopting the plausible criteria, that is:
in the presence of the intermediate gauge symmetry, all
superheavy masses including the color triplet.

Higgsinos have masses similar to the new high values
of the unification scales. Although we have used the value
of reduced Planck scale for this analysis, we have checked
that our method also works with MPl = 1.2 × 1019 GeV
as defined by the Particle Data Group.

Due to high values of the intermediate scale, the suc-
cess of the explanation of fermion masses and mixings is
expected to be similar to the single step breaking case,
but the additional advantages of a high unification scale is
that it ensures perturbative SUSY SO(10) with R-parity
conservation at least up to the Planck scale and increases
the stability of the proton. A different scenario for the
increase of the proton stability in single step breaking of
SUSY SO(10) with R-parity conservation has been sug-
gested recently by introducing specific textures [19] where
the perturbative condition on SUSY SO(10) gauge cou-
pling holds up to µ = few × 2 × 1016 GeV.
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